Math, asked by chourasiyavishesh, 1 month ago

Evaluate: −
(

/
) − −

(

/+
).​

Attachments:

Answers

Answered by visankreddy
0

Answer:

Hope it helps

Attachments:
Answered by TheGodWishperer
1

Good afternoon answer is below

Step-by-step explanation:

identify:-

  { \tan }^{ - 1}  \frac{x}{y}  - { \tan }^{ - 1}  \frac{x - y}{x + y}  = { \tan }^{ - 1}  \frac{ \frac{x}{y}  -  \frac{x - y}{x + y} }{ 1  + \frac{x}{y} (\frac{x - y}{x + y})  }

 \rightrightarrows \: { \tan }^{ - 1}  \frac{ {x}^{2}  + xy - xy +  {y}^{2} }{{y}^{2}  + xy - xy +  {x}^{2}}

 \rightrightarrows \: { \tan}^{ - 1} \frac{1}{1}

 \rightrightarrows \: ( { \tan }^{ - 1} 1) =  \frac{\pi}{4}

Additional information

  • the formula can only be applied if xy>-1
  • in this case xy is always greater than -1

Similar questions