Evaluate (4x2 – 100) ÷ 6(x + 5).
Answers
Answer:
SOLUTION
TO DETERMINE
\sf{( \: 4 {x}^{2} - 100 \: ) \div \: 6( \:x + 5 \: ) }(4x
2
−100)÷6(x+5)
FORMULA TO BE IMPLEMENTED
We are aware of the identity that
\sf{ {a}^{2} - {b}^{2} = (a + b)(a - b) }a
2
−b
2
=(a+b)(a−b)
EVALUATION
Here the expression is
\sf{( \: 4 {x}^{2} - 100 \: ) \div \: 6( \:x + 5 \: ) }(4x
2
−100)÷6(x+5)
Now
\sf{4 {x}^{2} - 100 \: }4x
2
−100
= \sf{4( \: {x}^{2} - 25 \: )}=4(x
2
−25)
= \sf{4 \bigg[ \: {(x)}^{2} - {(5)}^{2} \: \bigg]} \: \: ( \: using \: identity)=4[(x)
2
−(5)
2
](usingidentity)
= \sf{4(x + 5)(x - 5)}=4(x+5)(x−5)
Hence the given expression
= \sf{( \: 4 {x}^{2} - 100 \: ) \div \: 6( \:x + 5 \: ) }=(4x
2
−100)÷6(x+5)
\displaystyle \sf{ = \frac{4 {x}^{2} - 100 }{6(x + 5)} }=
6(x+5)
4x
2
−100
\displaystyle \sf{ = \frac{4 (x + 5)(x - 5) }{6(x + 5)} }=
6(x+5)
4(x+5)(x−5)
\displaystyle \sf{ = \frac{4 (x - 5) }{6} }=
6
4(x−5)
\displaystyle \sf{ = \frac{2 (x - 5) }{3} }=
3
2(x−5)
FINAL ANSWER
\boxed{ \: \displaystyle \sf{ (4 {x}^{2} - 100 \: ) \div \: 6( \:x + 5 \: ) = \frac{2 (x - 5) }{3} } \: }
(4x
2
−100)÷6(x+5)=
3
2(x−5)
Answer:
α^2-b^2=(a+b)
so, 4x^2-100=(2x+10) (2x-10)