Math, asked by IITBoy, 24 days ago

Evaluate:
5*[25^n+1] - 25 * (5^2n) / 5 * (5^2n+3) - (25^n+1)

Answers

Answered by abhineetkumar7
0

Answer:

The simplified answer is \frac{1}{6}

6

1

Step-by-step explanation:

\begin{gathered}\frac{5\times 25^{n+1}-25\times5^{2n} }{5\times 5^{2n+3}-25^{n+1} }\\\\=\frac{5\times 5^{2(n+1)}-25\times5^{2n} }{5\times 5^{2n+3}-5^{2(n+1)} }\\\\=\frac{5\times 5^{2n+2}-25\times5^{2n} }{5\times 5^{2n+3}-5^{2n+2} }\\\\=\frac{5\times 5^{2n}\times 5^{2} -25\times5^{2n} }{5\times 5^{2n}\times5^{3} -5^{2n}\times5^{2} }\end{gathered}

5×5

2n+3

−25

n+1

5×25

n+1

−25×5

2n

=

5×5

2n+3

−5

2(n+1)

5×5

2(n+1)

−25×5

2n

=

5×5

2n+3

−5

2n+2

5×5

2n+2

−25×5

2n

=

5×5

2n

×5

3

−5

2n

×5

2

5×5

2n

×5

2

−25×5

2n

Taking the common factor from both numerator and denominator

\begin{gathered}=\frac{5^{2n}\times 5^{2} (5-1)}{5^{2n}\times5^{2} (5^{2} -1 }\\\end{gathered}

=

5

2n

×5

2

(5

2

−1

5

2n

×5

2

(5−1)

Cancel out the common term from numerator and denominator.

\begin{gathered}=\frac{ (5-1)}{ (5^{2} -1 ) }\\\\=\frac{4}{25-1} \\\\=\frac{4}{24} \\\\=\frac{1}{6}\end{gathered}

=

(5

2

−1)

(5−1)

=

25−1

4

=

24

4

=

6

1

Step-by-step explanation:

please mark me as a brainlist please

Similar questions