evaluate (_(5+m))²_4(m_2)(16) = 0
Answers
hi mate,
solution:y
(-(5+m))²-4(m-2)(16) = 0
25 + m² +( - 4m + 8 ) 16 = 0
25 + m² - 64 m +128 = 0
m² - 64 m + 128 + 25 = 0
m² - 64 m + 153 = 0
Solving m²-64m+153 = 0 by the Quadratic Formula
- B ± √ B²-4AC
m = ————————
2A
In our case, A = 1
B = -64
C = 153
Accordingly, B² - 4AC =
4096 - 612 =
3484
Applying the quadratic formula :
64 ± √ 3484
m = ——————
2
√ 3484 = √ 2•2•13•67 =
± 2 • √ 871
√ 871 , rounded to 4 decimal digits, is 29.5127
So now we are looking at:
m = ( 64 ± 2 • 29.513 ) / 2
Two real solutions:
m =(64+√3484)/2=32+√ 871 = 61.513
or:
m =(64-√3484)/2=32-√ 871 = 2.487
Two solutions were found :
m =(64-√3484)/2=32-√ 871 = 2.487
m =(64+√3484)/2=32+√ 871 = 61.513
i hope it helps you.