Math, asked by soundarya481633, 10 months ago

evaluate 8 / cot2 theta _ 8 / cos2 theta​

Answers

Answered by snehatalekar68
1

Answer:

zero(0)

Step-by-step explanation:

8/cos2theta-8/cos2theta

=8-8/cos2theta

=0/cos2theta

=0

Answered by harendrachoubay
0

The value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} is equal to - 8.

Step-by-step explanation:

We have,

\dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta}

To find, the value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} = ?

\dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta}

=\dfrac{8}{\dfrac{\cos^2 \theta}{\sin^2 \theta} }-\dfrac{8}{\cos^2 \theta}

Using the trigonometric identity,

\cot \theta}=\dfrac{\cos \theta}{\sin \theta}

=\dfrac{8\sin^2 \theta}{\cos^2 \theta}-\dfrac{8}{\cos^2 \theta}

= \dfrac{8}{\cos ^2 \theta} (\sin^2 \theta-1)

= \dfrac{8}{\cos ^2 \theta} (-\cos ^2 \theta)

Using the trigonometric identity,

\sin^2 \theta+\cos^2 \theta=1

= - 8

Thus, the value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} is equal to - 8.

Similar questions