Math, asked by bh10206050222, 1 month ago

Evaluate
8
x ²(1 – e-*) dx
0​

Answers

Answered by shadowsabers03
2

Correct Question:-

Evaluate \displaystyle\int\limits_0^8x^2\left(1-e^{-x}\right)\ dx.

Solution:-

We're asked to evaluate the integral,

\displaystyle\longrightarrow I=\int\limits_0^8x^2\left(1-e^{-x}\right)\ dx

\displaystyle\longrightarrow I=\int\limits_0^8\left(x^2-x^2e^{-x}\right)\ dx

\displaystyle\longrightarrow I=\int\limits_0^8x^2\ dx-\int\limits_0^8x^2e^{-x}\right)\ dx\quad\quad\dots(1)

Consider,

\displaystyle\longrightarrow I_1=\int\limits_0^8x^2\ dx

\displaystyle\longrightarrow I_1=\dfrac{1}{3}\left[x^3\right]_0^8

\displaystyle\longrightarrow I_1=\dfrac{512}{3}

Consider,

\displaystyle\longrightarrow I_2=\int\limits_0^8x^2e^{-x}\ dx

\displaystyle\longrightarrow I_2=-\left[(x^2-2x+2)e^{-x}\right]_0^8

\displaystyle\longrightarrow I_2=-\left(50e^{-8}-2\right)

\displaystyle\longrightarrow I_2=2-50e^{-8}

Then (1) becomes,

\displaystyle\longrightarrow I=\dfrac{512}{3}-\left(2-\dfrac{50}{e^8}\right)

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{50}{e^8}+\dfrac{506}{3}}}

Similar questions