Math, asked by manya2863, 1 month ago

Evaluate

A.√3-2√2
B.√(√2-1)/(√2+1)
C.√5+2√6

Answers

Answered by pjahnabi007
8

Answer:

a) \sqrt{2}  \\ b ) \sqrt{2 } - 1 \\ c)

Step-by-step explanation:

a) \sqrt{3 - 2}  \sqrt{2 }  \\  \\ calculate   \:  the \: \\  product \: of   \: the \: root =  >  \\  \\  \sqrt{6 - 4}  \\ subtract \:  \: 4 \:  \: from \:  \: 6  =  > \\  \\  \sqrt{2}

_______________________________________

 \sqrt{( \sqrt{2 - 1)} }   \div ( \sqrt{2}  + 1) \\ subtract \:  \: 1 \:  \: from \:  \: 2 \\ to \: get \: 1  =  > \\  \\  \\  \frac{ \sqrt{ \sqrt{1} } }{ \sqrt{2 }  + 1}  \\ calculate \ :  \: the \: \:  square \:  \: root \: of \: 1 \\ and \: get \: 1 =  >  \\  \\  \\  \frac{ \sqrt{1} }{ \sqrt{2}  + 1}  \\ calculate \: \: the \:  \: square \:  \: root \:  \: o f\:  \:  \: 1 \\ and \: get \:  \: 1 =  >  \\  \\  \frac{1}{ \sqrt{2}  + 1} \\    \\  =  >  \frac{ \sqrt{2}  - 1}{( \sqrt{2} + 1)( \sqrt{2 - 1)}  }  \\  \\  =  >  \frac{ \sqrt{2} - 1 }{( \sqrt{2) {}^{2} } - 1 {}^{2}  }  \\  \\ =  >   \frac{ \sqrt{2}  - 1}{2 - 1}  \\  \\  =  >  \frac{ \sqrt{2 }  - 1}{2}  \\  \\  =  >  \sqrt{2}  - 1

Similar questions