Math, asked by tharunnithya8781, 2 days ago

Evaluate: a2 (b2 – c2) + b2 (c2 – a2) + c2 (a2 – b2)​

Answers

Answered by vivekb195
1

Answer:

0

Step-by-step explanation:

a2b2 - a2c2 + b2c2 -a2b2 +c2a2 - b2c2

every term will cancel it's counter part with opposite sign and we will get 0

Answered by NewGeneEinstein
0

Lets do

 \\ \sf\longmapsto  {a}^{2} ( {b}^{2}  -  {c}^{2} ) +  {b}^{2} ( {c}^{2}  -  {a}^{2}  )+  {c}^{2} ( {a}^{2}  -  {b}^{2} ) \\  \\ \sf\longmapsto  {a}^{2}  {b}^{2}  -  {a}^{2}  {c}^{2}  +  {b}^{2}  {c}^{2}  -  {b}^{2}  {a}^{2}  +  {c}^{2}  {a}^{2}  -  {c}^{2}  {b}^{2}  \\  \\ \sf\longmapsto  {a}^{2}  {b}^{2}  -  {a}^{2}  {c}^{2}  +  {b}^{2}  {c}^{2}  -  {a}^{2}  {b}^{2}  +  {a}^{2}  {c}^{2}  -  {b}^{2}  {c}^{2}   \\    \\  \sf \longmapsto \:  { a}^{2}  {b}^{2}   - {a}^{2}  {b}^{2}  +  {b}^{2}  {c}^{2}  -  {b}^{2}  {c}^{2}  +  {a}^{2}  {c}^{2}  -  {a}^{2}  {c}^{2}  \\   \\  \sf \longmapsto \:  0 + 0 + 0 \\   \\  \sf \longmapsto \: 0

Similar questions