Math, asked by lokeshlokd2112, 1 year ago

Evaluate and write each of the following in terms of x and y.if x= log 3 base 2 y= log 5 base 2.i.) log 7.5 base 2ii.) log 6750 base 2

Answers

Answered by ParamanandaDas
275

 log_{2}(7.5) =  log_{2}(15 \div 2)  \\  =  >  log_{2}(15)  -  log_{2}(2)  \\  =  >  log_{2}(5 \times 3)  - 1 \\  =  >  log_{2}(5)  +  log_{2}(3)  - 1 \\  =  > y + x - 1
6750 =  {5}^{3}  \times  {3}^{3}  \times 2
take logarithm with Base 2 in both sides
 log_{2}(6750)  =  log_{2}( {5}^{3}   \times  {3}^{3}  \times 2)  \\  =  log_{2}( {5}^{3} )  +  log_{2}( {3}^{3} )  +  log_{2}(2)  \\  = 3 log_{2}(5)  + 3 log_{2}(3)  + 1 \\  = 3y + 3x + 1

ParamanandaDas: if you liked it then mark it as brainliest answer
Answered by aquialaska
114

Answer:

log_2\,7.5=log_2\,3+log_2\,5-1=x+y-1  and log_2\,6750=3y+1+3x

Step-by-step explanation:

Given, x=log_2\,3\:\:and\:\:y=log_2\,5

We use the following results,

log_e\,e=1

log\,a\times b=log\,a+log\,b

log\,\frac{a}{b}=log\,a-log\,b

log\,x^a=a.log\,x

i).

log_2\,7.5=log_2\frac{75}{10}=log_2\,\frac{15}{2}=log_2\,15-log_2\,2

=log_2\,(3\times5)-1=log_2\,3+log_2\,5-1=x+y-1

ii).

log_2\,6750=log_2(5^3\times2\times3^3)=log_2\,5^3+log_2\,2+log_2\,3^3

=log_2\,5^3+1+log_2\,3^3=3.log_2\,5+1+3.log_2\,3=3y+1+3x

Therefore, log_2\,7.5=log_2\,3+log_2\,5-1=x+y-1  and log_2\,6750=3y+1+3x

Similar questions