Math, asked by kumarkundan87196, 9 months ago

Evaluate: (〖cos〗^2 (45°+θ)+〖cos〗^2 (45°-θ))/(tan (60°+θ)tan (30°-θ) )+cosec (75°+θ)-sec⁡(15°-θ).​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
3

Answer:-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\implies{\dfrac{cos^2 (45 \degree+ \theta)+ cos^2 (45 \degree - \theta)}{tan(60 \degree + \theta) tan(30 \degree - \theta)} + cosec (75 \degree + \theta)- sec(15 \degree - \theta)}

\implies{\dfrac{cos^2 (45 \degree+ \theta)+ sin^2 (90 \degree -(45 \degree - \theta))}{tan(60 \degree + \theta)cot (90 \degree - (30 \degree - \theta))} + cosec (75 \degree + \theta)- cosec(90 \degree -(75 \degree + \theta))}

\implies{\dfrac{cos^2 (45 \degree+ \theta)+ sin^2 (45 \degree + \theta)}{tan(60 \degree + \theta)cot(60 \degree + \theta))} + cosec (75 \degree + \theta)- cosec(75 \degree + \theta))}

\implies{\dfrac{cos^2 (45 \degree+ \theta)+ sin^2 (45 \degree + \theta)}{tan(60 \degree + \theta)cot(60 \degree + \theta))}\cancel{ + cosec (75 \degree + \theta)}\cancel {- cosec(75 \degree + \theta))}}

\implies{\dfrac{cos^2 (45 \degree+ \theta)+ sin^2 (45 \degree + \theta)}{tan(60 \degree + \theta)cot(60 \degree + \theta))}}

We know,

\boxed{sin^2 \theta + cos^2 \theta = 1}

Also,

\boxed{tan \theta \times \cot \theta = 1}

Therefore,

\implies\dfrac{1}{1} + 0

\implies\bf{1}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions