Math, asked by pklusifer8004, 6 months ago

Evaluate (cos 2x+2sin^2x)/ cis^2x dx

Answers

Answered by Anonymous
48

Step-by-step explanation:

 \tt \large \underline{ solution} \\  \\  \\  \tt cosx =  {cos}^{2} x -  {sin}^{2} x \\  \\  \\  \tt  {cos}^{2} x = 1 -  {sin}^{2} x \\  \\  \\  \tt cos2x = 1 -  {sin}^{2} x -  {sin}^{2} x \\  \\  \\ \tt : \implies 1 - 2 {sin}^{2} x \\  \\  \\  \tt \large \int  \frac{ {cos}^{2}x + 2 {sin}^{2}  x }{ {cos}^{2} x}  \:  \: dx \\  \\  \\  \tt :\implies    \large\int  \frac{1 -  \cancel{2 {sin}^{2}x} +  \cancel{2 {sin}^{2} x} }{ {cos}^{2}x }  \\  \\  \\  \tt :\implies \large \int  \frac{1}{ {cos}^{2} x} dx  =  \large \int {sec}^{2} x \: \: dx \\  \\  \\  :  \implies   \tt\large tanx \:  + c

Similar questions