Math, asked by enthalaraju71229, 10 months ago

evaluate cos/sec+cosec ​

Attachments:

Answers

Answered by paraskhatri
1

Answer:

cos ÷sec+cosec

change the following in the terms of sin & cos

cos÷(1÷cos+1÷sin)

by taking LCM

cos ÷(sin+cos÷sincos)

cos(sincos) ÷ sin+cos

Answered by harendrachoubay
1

The value of \dfrac{\cos \theta}{\sec \theta+\csc \theta} = \dfrac{1}{{\sin \theta(\sin \theta+\cos \theta)}}

Step-by-step explanation:

We have,

\dfrac{\cos \theta}{\sec \theta+\csc \theta}

To find, the value of \dfrac{\cos \theta}{\sec \theta+\csc \theta} = ?

\dfrac{\cos \theta}{\sec \theta+\csc \theta}

= \dfrac{\cos \theta}{\dfrac{1}{\cos \theta} +\dfrac{1}{\sin \theta} }

Using the trigonometric identity,

\sec A= \dfrac{1}{\cos A} and \csc A= \dfrac{1}{\sin A}

= \dfrac{\cos \theta}{\dfrac{\sin \theta+\cos \theta}{\sin \theta\cos \theta}}

= \dfrac{\cos \theta}{{\sin \theta\cos \theta(\sin \theta+\cos \theta)}}

= \dfrac{1}{{\sin \theta(\sin \theta+\cos \theta)}}

Thus, the value of \dfrac{\cos \theta}{\sec \theta+\csc \theta} = \dfrac{1}{{\sin \theta(\sin \theta+\cos \theta)}}

Similar questions