Math, asked by shyambana07, 4 months ago

. Evaluate : cos60˚cos30˚- sin60˚sin30˚

Answers

Answered by Aryan0123
6

\bf{We \: know \: that:}\\\\\star \: \sf{cos \: 60^{\circ} = \dfrac{1}{2}}\\\\\\\star \: \sf{cos \: 30^{\circ} = \dfrac{\sqrt{3}}{2}}\\\\\\\star \: \sf{sin \: 60^{\circ} = \dfrac{\sqrt{3}}{2}}\\\\\\\star \: \sf{sin \: 30^{\circ} = \dfrac{1}{2}}

Substitute the above values in the given question.

\sf{cos \: 60^{\circ}cos30^{\circ}- sin60^{\circ}sin30^{\circ}}\\\\\\\Rightarrow \: \sf{\bigg(\dfrac{1}{2} \times \dfrac{\sqrt{3}}{2}\bigg) - \bigg(\dfrac{\sqrt{3}}{2} \times \dfrac{1}{2}\bigg)}\\\\\\\\\Rightarrow \: \sf{\dfrac{\sqrt{3}}{4} - \dfrac{\sqrt{3}}{4}}\\\\\\\Rightarrow \sf{0}\\\\\\\therefore \large{\boxed{\boxed{\bf{cos \: 60^{\circ}cos30^{\circ}- sin60^{\circ}sin30^{\circ} = 0}}}}

Know more:

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Similar questions