evaluate cosec (-1410)
Answers
Answered by
9
First convert the angle given in degree to radian.
−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π
So,
cosec(−1410°)=cosec(−8–1/6π)cosec(−1410°)=cosec(−8–1/6π)
cosec(−x)=−cosec(x)cosec(−x)=−cosec(x), then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(8-1/6π)cosec(−1410)=−cosec(8–1/6π)
As we know that after an interval of 2π, values ofcoseccosecrepeat. Then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(–1/6π)cosec(−1410)=−cosec(–1/6π)
cosec(−1410)=cosec(1/6π)cosec(−1410)=cosec(1/6π)
cosec(−1410)=cosec(30°)cosec(−1410)=cosec(30°)
cosec(−1410)=1/sin(30°)cosec(−1410)=1/sin(30°)
cosec(−1410)=1/(1/2)cosec(−1410)=1/(1/2)
cosec(−1410)=2cosec(−1410)=2
Is the solution.
Hope It Helps! :-)
−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π
So,
cosec(−1410°)=cosec(−8–1/6π)cosec(−1410°)=cosec(−8–1/6π)
cosec(−x)=−cosec(x)cosec(−x)=−cosec(x), then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(8-1/6π)cosec(−1410)=−cosec(8–1/6π)
As we know that after an interval of 2π, values ofcoseccosecrepeat. Then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(–1/6π)cosec(−1410)=−cosec(–1/6π)
cosec(−1410)=cosec(1/6π)cosec(−1410)=cosec(1/6π)
cosec(−1410)=cosec(30°)cosec(−1410)=cosec(30°)
cosec(−1410)=1/sin(30°)cosec(−1410)=1/sin(30°)
cosec(−1410)=1/(1/2)cosec(−1410)=1/(1/2)
cosec(−1410)=2cosec(−1410)=2
Is the solution.
Hope It Helps! :-)
riYaGoYal:
Of Course Not.
Similar questions
Business Studies,
8 months ago
India Languages,
8 months ago
Math,
8 months ago
Math,
1 year ago
English,
1 year ago
Chemistry,
1 year ago