Math, asked by Vanshithadesikan, 10 months ago

Evaluate
cosec^2(90-theta)-tan^2theta/5(cos^2 48+cos^42)+2/5sin48sec42-1/5tan^60​

Answers

Answered by Anonymous
2

HEY MATE YOUR ANSWER IS HERE...

CORRECT QUESTION

 \frac{ {cosec }^{2}(90 - x)  -  {tan}^{2} x}{5( {cos}^{2} 48 +  {cos}^{2}42) }  +  \frac{2}{ 5}  \times sin \: 48 \: sec \: 42 -  \frac{1}{5}  {tan}^{2} 60

SOLUTION

ACCORDING TO THE QUESTION

( LET = X )

 \frac{ {cosec }^{2}(90 - x)  -  {tan}^{2} x}{5( {cos}^{2} 48 +  {cos}^{2}42) }  +  \frac{2}{ 5}  \times sin \: 48 \: sec \: 42 -  \frac{1}{5}  {tan}^{2} 60

NOW COMPLEMENTARY ANGLES OF TRIGNOMATREY:-

cosec \: (90 - x) = sec \: x \\  \\ sin \: (90 - x) = cos \: x

 \frac{ {sec }^{2}x -  {tan}^{2} x}{5( {cos}^{2} 48 +  {sin}^{2}48) }  +  \frac{2}{ 5}  \times sin \: 48 \: cosec \: 48 -  \frac{1}{5}  {tan}^{2} 60

NOW BY TRIGNOMATRIC IDENTITY

 {sec}^{2} x -  {tan}^{2} x = 1 \\  \\  {sin}^{2} x \:  +  {cos}^{2}  = 1

 \frac{1}{5( 1) }  +  \frac{2}{ 5}  \times sin \: 48 \: cosec \: 48 -  \frac{1}{5}  {tan}^{2} 60

NOW BY TRIGNOMATRIC RATIOS

sin \: x \times cosec \: x = 1

 \frac{1}{5 }  +  \frac{2}{ 5}  \times1-  \frac{1}{5}  {tan}^{2} 60

NOW BY TRIGNOMATRIC VALUES

tan 60 =  \sqrt{3}

 \frac{1}{5 }  +  \frac{2}{ 5}  -  \frac{1}{5}  { (\sqrt{3} )}^{2}

NOW BY FURTHER CALCULATION

 = \frac{1}{5 }  +  \frac{2}{ 5}  -  \frac{3}{5}    \\ \\  =  \frac{3}{5}  -  \frac{3}{5}  \\  \\  = 0

THANKS FOR UR QUESTION HOPE IT HELPS

★ KEEP SMILING ☺️✌️ ★

Similar questions