Math, asked by ifrahzameer8366, 1 year ago

Evaluate \dfrac c2-3+\dfrac 6d 2 c ​ −3+ d 6 ​ when c=14c=14 and d=3d=3.

Answers

Answered by CarlynBronk
1

Solution:

We have to evaluate the expression when, c=14, d=3

\frac{c}{2}-3+\frac{6}{d} (2c-3)+ d ^6\\\\= \frac{14}{2}-3+\frac{6}{3}(2 \times 14-3)+3^6\\\\=7-3+2(28-3)+729\\\\ =4+2 \times 25+729\\\\ =4 +50 +759\\\\=813

Answered by pinquancaro
3

The evaluation is \frac{c}{2}-3+\frac{6}{d}=6

Step-by-step explanation:

Given : Expression \frac{c}{2}-3+\frac{6}{d} when c=14 and d=3.

To find : Evaluate the expression ?

Solution :

Expression \frac{c}{2}-3+\frac{6}{d}

Substitute c=14 and d=3 in the expression,

\frac{c}{2}-3+\frac{6}{d}=\frac{14}{2}-3+\frac{6}{3}

\frac{c}{2}-3+\frac{6}{d}=7-3+2

\frac{c}{2}-3+\frac{6}{d}=6

Therefore, the evaluation is \frac{c}{2}-3+\frac{6}{d}=6

#Learn more

\dfrac{3x}{2}+\dfrac{5}{8}=\dfrac{2}{5}\:\\\\ find \: x

https://brainly.in/question/9284246

Similar questions