Evaluate:∫(e^ax-e^-ax)/(e^ax+e^-ax)dx
Answers
Answered by
0
solution
∫(e∧ax-e∧-ax)/(e∧ax+e∧-ax)
let u=e∧ax+e∧-ax)
du/dx=(aeax-ae-ax)
⇒dx=du/(ae∧ax-ae∧-ax)
then we substitute
∫(e∧ax-e∧-axu)/u*du/(ae∧ax-ae∧-ax)
⇒∫1/u*1/a
⇒=1/a∫1/u*du
=1/a(inu)+c
1/a(in(e∧ax+e∧-ax)+c
Similar questions