Evaluate each of the following 4 (sin⁴60° + cos⁴ 30°) − 3 (tan² 60° − tan² 45°) + 5 cos² 45°
Answers
Answered by
29
SOLUTION :
Given :
4 (sin⁴ 60° + cos⁴ 30°) − 3 (tan² 60° − tan² 45°) + 5 cos² 45°
= 4((√3/2)⁴ + (√3/2)⁴) - 3((√3)²- 1² ) + 5(1/√2)²
[sin 60° = √3/2 , cos 30° = √3/2 , cos 45° =1/√2 , tan 60° = √3, tan 45° = 1]
= 4 (9 / 16) + (9/16)) - 3(3 - 1) + 5 × ½
= 4((9+9)/16) - 3 × 2 + 5/2
= 4 × (18/16 ) - 6 + 5/2
= (18/4) - 6 + 5/2
= 9/2 - 6 + 5/2
= 9/2 + 5/2 - 6
= (9+5) /2 - 6
= 14/2 - 6
= 7 - 6 = 1
4 (sin⁴ 60° + cos⁴ 30°) − 3 (tan² 60° − tan² 45°) + 5 cos² 45° = 1
Hence , 4 (sin⁴ 60° + cos⁴ 30°) − 3 (tan² 60° − tan² 45°) + 5 cos² 45° = 1
HOPE THIS ANSWER WILL HELP YOU…
Answered by
13
Evaluate :-
4 (sin⁴60° + cos⁴ 30°) − 3 (tan² 60° − tan² 45°) + 5 cos² 45°
= 4 { ( √3 / 2 )⁴ + ( √3 / 2 )⁴ } - 3 { ( √3 )² - ( 1 )² } + 5 × ( 1 / √2 )²
= 4 { ( 9 / 16 ) + ( 9 / 16 ) } - 3 { 3 - 1 } + 5 × 1 / 2
= 4 × 18 / 16 - 3 × 2 + 5 / 2
= 9 / 2 - 6 + 5 / 2
= ( 9 - 12 + 5 ) / 2
= 2 / 2
= 1
______________________________
Since ,
sin60° = √3 / 2
cos30° = √3 / 2
tan60° = √3
tan45° = 1
cos45° = 1 / √2
_______________________________
4 (sin⁴60° + cos⁴ 30°) − 3 (tan² 60° − tan² 45°) + 5 cos² 45°
= 4 { ( √3 / 2 )⁴ + ( √3 / 2 )⁴ } - 3 { ( √3 )² - ( 1 )² } + 5 × ( 1 / √2 )²
= 4 { ( 9 / 16 ) + ( 9 / 16 ) } - 3 { 3 - 1 } + 5 × 1 / 2
= 4 × 18 / 16 - 3 × 2 + 5 / 2
= 9 / 2 - 6 + 5 / 2
= ( 9 - 12 + 5 ) / 2
= 2 / 2
= 1
______________________________
Since ,
sin60° = √3 / 2
cos30° = √3 / 2
tan60° = √3
tan45° = 1
cos45° = 1 / √2
_______________________________
Similar questions