Evaluate each of the following (cos 0° + sin 45° + sin 30°) (sin 90° − cos 45° + cos 60°)
Answers
Answered by
13
SOLUTION :
Given :
(cos 0° + sin 45°+ sin 30°) (sin 90° - cos 45° + cos 60°)
= (1+1/√2 +1/2) (1- 1/√2 + 1/2)
[cos 0° = 1 , sin 45° = 1/√2 , sin 30°= ½, sin 90° = 1 , cos 0° = 1 , cos 45° = 1/√2 , cos 60°= ½]
= (1 + ½ + 1/√2) (1 + ½ - 1/√2)
[ By rearranging the terms ]
= ((2+1)/2 +1/√2) ((2 + 1)/2 - 1/√2)
[ Taking L.C.M of 1 & 2 is 2]
= (3/2 + 1/√2) (3/2 - 1/√2)
= (3√2 + 2)/2√2 (3√2 - 2)/2√2
[Taking L.C.M of 2 & √2 is 2√2]
= [ (3√2 + 2) (3√2 - 2)] / 2√2 × 2√2
= (3√2)² - (2)² / 4× 2
[(a+b) (a-b) = a² - b²]
=( 9× 2 - 4)/8
= (18 - 4)/8
= 14/8
= 14÷2 / 8÷2
= 7/4
(cos 0° + sin 45°+ sin 30°) (sin 90° - cos 45° + cos 60°) = 7/4
Hence, (cos 0° + sin 45°+ sin 30°) (sin 90° - cos 45° + cos 60°) = 7/4
HOPE THIS ANSWER WILL HELP YOU.
DeeptiMohanty:
NiCe ExpLaiNtiOn ....❤❤
Answered by
6
Answer :-
________________________
(cos 0° + sin 45° + sin 30°) (sin 90° − cos 45° + cos 60°)
=> ( 1 + 1 / √2 + 1 / 2 ) ( 1 - 1 / √2 + 1 / 2 )
=> { ( 1 + 1 / 2 ) + ( 1 / √2 ) } { ( 1 + 1 / 2 ) - ( 1 / √2 ) }
=> ( 1 + 1 / 2 )² - ( 1 / √2 )²
[ • a² - b² = ( a + b ) ( a - b ) , where , a = ( 1 + 1 / 2 ) and b = ( 1 / √2 ) ]
=> { ( 1 )² + 2 . 1 . 1 / 2 + ( 1 / 2 )² } - ( 1 / 2 )
=> ( 1 + 1 + 1 / 4 ) - 1 / 2
=> 2 + 1 / 4 - 1 / 2
=> ( 8 + 1 - 2 ) / 4
=> 7 / 4
•°• The required Answer is 7 / 4
___________________________________
Since ,
cos0° = 1
cos45° = 1 / √2
cos60° = 1 /2
sin90° = 1
sin45° = 1 / √2
sin30° = 1 / 2
_________________________
________________________
(cos 0° + sin 45° + sin 30°) (sin 90° − cos 45° + cos 60°)
=> ( 1 + 1 / √2 + 1 / 2 ) ( 1 - 1 / √2 + 1 / 2 )
=> { ( 1 + 1 / 2 ) + ( 1 / √2 ) } { ( 1 + 1 / 2 ) - ( 1 / √2 ) }
=> ( 1 + 1 / 2 )² - ( 1 / √2 )²
[ • a² - b² = ( a + b ) ( a - b ) , where , a = ( 1 + 1 / 2 ) and b = ( 1 / √2 ) ]
=> { ( 1 )² + 2 . 1 . 1 / 2 + ( 1 / 2 )² } - ( 1 / 2 )
=> ( 1 + 1 + 1 / 4 ) - 1 / 2
=> 2 + 1 / 4 - 1 / 2
=> ( 8 + 1 - 2 ) / 4
=> 7 / 4
•°• The required Answer is 7 / 4
___________________________________
Since ,
cos0° = 1
cos45° = 1 / √2
cos60° = 1 /2
sin90° = 1
sin45° = 1 / √2
sin30° = 1 / 2
_________________________
Similar questions