Math, asked by hahhassss33, 10 months ago

evaluate each of the following integrals.
chp- Definite integrals​

Attachments:

Answers

Answered by amitkumar44481
4

AnsWer :

π / 2.

QuestioN :

 \tt1. \int\limits_{0}^{1 /2}\dfrac{dx}{ \sqrt{4 -  {x}^{2} } }  \\

SolutioN :

 \tt \longmapsto\int\limits_{0}^{1 /2}\dfrac{dx}{ \sqrt{4 -  {x}^{2} } }  \\

 \tt  \longmapsto\int\limits_{0}^{1 /2}\dfrac{dx}{ \sqrt{ {(2)}^{2}  -  {x}^{2} } }  \\

★ Convert into :

  • a² - b² = ( a + b )( a - b )

We have, Formula.

  • Sin^-1 x / 2.
  • Where as,
  • a = 2.

 \tt \longmapsto{Sin}^{-1}  \frac{x}{2}\Bigg|_{0}^{2} \\

Now, Putting the value of 2 to 0.

 \tt \longmapsto{Sin}^{-1}  \frac{2}{2} -{Sin}^{-1}  \frac{0}{2} \\

 \tt \longmapsto{Sin}^{-1}  1 -{Sin}^{-1} 0\\

 \tt \longmapsto\dfrac{\pi}{2}-0. \\

 \tt \longmapsto\dfrac{\pi}{2}. \\

Answered by Anonymous
118

♣ Qᴜᴇꜱᴛɪᴏɴ :

\boxed{\sf{\int _0^{\tfrac{1}{2}}\dfrac{1}{\sqrt{4-x^2}}dx}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int _0^{\tfrac{1}{2}}\dfrac{1}{\sqrt{4-x^2}}dx=\arcsin \left(\dfrac{1}{4}\right)\quad \left(\mathrm{Decimal:\quad }\:0.25268\dots \right)}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\text { Apply Trig Substitution: } x=2 \sin (u)

=\int _0^{\arcsin \left(\tfrac{1}{4}\right)}1du

\mathrm{Integral\:of\:a\:constant}:\quad \int adx=ax

=\left[1\cdot \:u\right]^{\arcsin \left(\tfrac{1}{4}\right)}_0

=\left[u\right]^{\arcsin \left(\tfrac{1}{4}\right)}_0

\text { Compute the boundaries: }[u]_{0}^{\arcsin \left(\tfrac{1}{4}\right)}=\arcsin \left(\dfrac{1}{4}\right)

\boxed{\sf{=arcsin \left(\dfrac{1}{4}\right)}}

Similar questions