Evaluate each of the following tan² 30° + tan² 45° + tan² 60°
Answers
Answered by
13
SOLUTION:
Given :
tan² 30° + tan² 45° + tan² 60°
= (1/√3)² + (√3)² + 1
= ⅓ + 3 + 1
[√3 × √3 = 3]
= ⅓ + 4
= ⅓ + 4/1
= (1 + 4×3) /3
[ By taking L.C.M]
= (1 + 12)/3 = 13/3
tan² 30° + tan² 45° + tan² 60° = 13/3
[tan 30° = 1/√3, tan 60° = √3, tan 45° = 1]
Hence, tan² 30° + tan² 45° + tan² 60° = 13/3
HOPE THIS ANSWER WILL HELP YOU…
Answered by
13
Answer :-
____________________________
To evaluate of : tan² 30° + tan² 45° + tan² 60°
Salutation :
tan² 30° + tan² 45° + tan² 60°
= ( 1 / √3 )² + ( 1 )² + ( √3 )²
= 1 / 3 + 1 + 3
= ( 1 + 3 + 9 ) / 3
= 13 / 3
______________________________
Since ,
tan30° = 1 / √3
tan45° = 1
tan60° = √3
_______________________________
____________________________
To evaluate of : tan² 30° + tan² 45° + tan² 60°
Salutation :
tan² 30° + tan² 45° + tan² 60°
= ( 1 / √3 )² + ( 1 )² + ( √3 )²
= 1 / 3 + 1 + 3
= ( 1 + 3 + 9 ) / 3
= 13 / 3
______________________________
Since ,
tan30° = 1 / √3
tan45° = 1
tan60° = √3
_______________________________
Similar questions