Evaluate each of the following
Answers
Answered by
13
SOLUTION :
Given :
sin² 30° cos² 45° + 4 tan² 30° + 1/2sin² 90° − 2 cos² 90° + 1/24 cos² 0°
= (½)² × (1/√2)² + 4(1/√3)² + ½(1)² - 2(0)² + 1/24×(1)²
[sin 30° = ½ ,cos 45° =1/√2, tan 30° = 1/√3,sin 90° = 1,cos 90° = 0, cos 0° = 1]
= ¼ × ½ + 4 × ⅓ + ½ - 0 + 1/24
= ⅛ + 4/3 + 1/ 2 +1/24
= [ (1×6) + (4× 16) + (1×24) + (1× 2)] / 48
[By taking L.C.M of 8,3,2,24. L.C.M is 48]
= (6 + 64 + 24 +2 )/48
= 96/48 = 2
sin² 30° cos² 45° + 4tan² 30° + 1/2sin² 90° − 2 cos² 90° + 1/24 cos² 0° = 2
Hence, sin² 30° cos² 45° + 4tan² 30° + 1/2sin² 90° − 2 cos² 90° + 1/24 cos² 0° = 2
HOPE THIS ANSWER WILL HELP YOU…
Answered by
15
Answer :-
____________________________
Evaluate :-
sin² 30° cos² 45° + 4 tan² 30° + 1/2sin² 90° − 2 cos² 90° + 1/24 cos² 0°
= ( 1 / 2 )² × ( 1 / √2 )² + 4 × ( 1 / √3 )² + 1 / 2 × ( 1 )² - 2 × ( 0 )² + 1 / 24 × ( 1 )²
= 1 / 4 × 1 / 2 + 4 × 1 / 3 + 1 / 2 + 1 / 24
= 1 / 8 + 4 / 3 + 1 / 2 + 1 / 24
= ( 3 + 32 + 12 + 1 ) / 24
= 48 / 24
= 2
_________________________________
Since ,
sin30° = 1 / 2
cos45° = 1 / √2
tan30° = 1 / √3
sin90° = 1
cos90° = 0
cos0° = 1
__________________________________
____________________________
Evaluate :-
sin² 30° cos² 45° + 4 tan² 30° + 1/2sin² 90° − 2 cos² 90° + 1/24 cos² 0°
= ( 1 / 2 )² × ( 1 / √2 )² + 4 × ( 1 / √3 )² + 1 / 2 × ( 1 )² - 2 × ( 0 )² + 1 / 24 × ( 1 )²
= 1 / 4 × 1 / 2 + 4 × 1 / 3 + 1 / 2 + 1 / 24
= 1 / 8 + 4 / 3 + 1 / 2 + 1 / 24
= ( 3 + 32 + 12 + 1 ) / 24
= 48 / 24
= 2
_________________________________
Since ,
sin30° = 1 / 2
cos45° = 1 / √2
tan30° = 1 / √3
sin90° = 1
cos90° = 0
cos0° = 1
__________________________________
Ashishkumar098:
hello
Similar questions