Math, asked by manjeetsolanki822, 9 months ago

Evaluate each of the following using identities. a)
( \frac{2}{3} p -  \frac{3}{4} q) {}^{2}

Answers

Answered by Anonymous
5

ANSWER

\large\underline\bold{GIVEN,}

\sf\therefore \left( \dfrac{2}{3} p - \dfrac{3}{4} q \right)^2

\sf\implies \left( \dfrac{2}{3} p - \dfrac{3}{4} q \right)^2

IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: (a-b)^2=a^2+b^2-2ab\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\implies \bigg( \dfrac{2p}{3} \bigg)^2 + \bigg( \dfrac{3q}{4} \bigg) - 2 \times \bigg( \dfrac{2p}{3} \bigg) \times \bigg( \dfrac{3q}{4}\bigg)

\sf\implies \dfrac{4p^2}{9} + \dfrac{9q^2}{16} - \dfrac{12pq}{12}

\sf\implies \dfrac{4p^2}{9} + \dfrac{9q^2}{16} - \dfrac{\cancel{12}\:pq}{\cancel{12}}

\sf\implies \dfrac{4p^2}{9} + \dfrac{9q^2}{16} - pq

\sf\implies \dfrac{64p^2+81q^2}{144} - pq

\sf\implies \dfrac{64p^2+81q^2-144pq}{144}

\large{\boxed{\bf{ \star\:\: \dfrac{64p^2+81q^2-144pq}{144}\:\: \star}}}

________________

Answered by ItzCaptonMack
0

\large\underline{\underline{\bold{\pink{\mathfrak{AnSwEr}}}}}

\large\underline\bold{GIVEN,}

\sf\therefore \left( \dfrac{2}{3} p - \dfrac{3}{4} q \right)^2

\sf\implies \left( \dfrac{2}{3} p - \dfrac{3}{4} q \right)^2

iDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: (a-b)^2=a^2+b^2-2ab\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\implies \bigg( \dfrac{2p}{3} \bigg)^2 + \bigg( \dfrac{3q}{4} \bigg) - 2 \times \bigg( \dfrac{2p}{3} \bigg) \times \bigg( \dfrac{3q}{4}\bigg)

\sf\implies \dfrac{4p^2}{9} + \dfrac{9q^2}{16} - \dfrac{12pq}{12}

\sf\implies \dfrac{4p^2}{9} + \dfrac{9q^2}{16} - \dfrac{\cancel{12}\:pq}{\cancel{12}}

\sf\implies \dfrac{4p^2}{9} + \dfrac{9q^2}{16} - pq

\sf\implies \dfrac{64p^2+81q^2}{144} - pq

\sf\implies \dfrac{64p^2+81q^2-144pq}{144}

\large{\boxed{\bf{ \star\:\: \dfrac{64p^2+81q^2-144pq}{144}\:\: \star}}}

Similar questions