Evaluate: Evaluate :
3
( 1)( 2)
x
dx x x
Answers
Answered by
0
Answer:
∫
−1
2
∣x
3
−x∣dx
It is clear that
x
3
−x⩾0on[−1,0]
x
3
−x⩽0on[0,1]
x
3
−x⩾0on[1,2]
Hence the interval of the integral can be subdivided as
∫
−1
2
∣x
3
−x∣dx=∫
0
−1
(x
3
−x)dx+∫
0
1
−(x
3
−x)dx+∫
1
2
(x
3
−x)dx
=∫
−1
0
(x
3
−x)dx+∫
0
1
(x−x
3
)dx+∫
1
2
(x
3
−x)dx
=[
4
x
4
−
2
x
2
]
−1
0
+[
2
x
2
−
4
x
4
]
0
1
+[
4
x
4
−
2
x
2
]
1
2
[∫x
n
dx=
n+
x
n+1
]
=−(
4
1
−
2
1
)+(
2
1
−
4
1
)+(4−2)−(
4
1
−
2
1
)
=
4
−1
+
2
1
+
2
1
−
4
1
+2−
4
1
+
2
1
=
2
3
−
4
3
+2
=
4
11
Ans
Attachments:
Similar questions
English,
9 days ago
English,
9 days ago
English,
9 days ago
Accountancy,
17 days ago
English,
17 days ago
Social Sciences,
9 months ago