Math, asked by sanskrutidhomne533, 1 month ago

evaluate f 9/1. x+1 /√X dx

Answers

Answered by Anonymous
0

\boxed{\mathrm{\int\dfrac{x+1}{\sqrt{x}}dx=\dfrac{2}{3}x\sqrt{x}+2\sqrt{x}+C}}

Explanation:

Now, \mathrm{\dfrac{x+1}{\sqrt{x}}}

\mathrm{=\sqrt{x}+\dfrac{1}{\sqrt{x}}}

\mathrm{=x^{1/2}+x^{-1/2}}

Taking integration on both sides, we get

\mathrm{\int\dfrac{x+1}{\sqrt{x}}dx=\int (x^{1/2}+x^{-1/2})dx}

\mathrm{\Rightarrow \int\dfrac{x+1}{\sqrt{x}}dx=\dfrac{1}{1/2+1}x^{1/2+1}+\dfrac{1}{-1/2+1}x^{-1/2+1}+C}

where \mathrm{C} is constant of integration

\mathrm{\Rightarrow \int\dfrac{x+1}{\sqrt{x}}dx=\dfrac{1}{3/2}x^{3/2}+\dfrac{1}{1/2}x^{1/2}+C}

\mathrm{\Rightarrow \int\dfrac{x+1}{\sqrt{x}}dx=\dfrac{2}{3}x\sqrt{x}+2\sqrt{x}+C}

This is the required integral.

Similar questions