Math, asked by thakranseema61, 1 year ago

Evaluate(i^17-(1/i)^34)^2

Answers

Answered by Hamy009
14

As i^4 = 1

answer is 2i

hope this will help you

Attachments:
Answered by sharmaaashutosh169
3

Concept

Iota

Iota is an imaginary unit number symbolized by the letter I and its value is √-1.

Given

Given the expression (i^{17}-(\frac{1}{i} )^{34})^2.

Find

We have to Evaluate this expression.

Solution

First the values of i^{17} and (\frac{1}{i} )^{34}

then,

i^{17}=i^{16}\times i

     =(i^4)^4\times i

     =(1)^4\times i

    =i

and

\frac{1}{i^{34}} =\frac{1}{(i^{2})^{17}}

    =\frac{1}{(-1)^{17}}

    =-1

Now substitute these value in (i^{17}-(\frac{1}{i} )^{34})^2.

then (i^{17}-(\frac{1}{i} )^{34})^2=(i-(-1))^2

                             =(1+i)^2

                             =1+(i)^2+2i

                             =1-1+2i

                             =2i

Hence the value is 2i.

Similar questions