Math, asked by iqrariaz7jan, 3 months ago

Evaluate improper integral

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

2 \int \limits^{ - 2} _{ -  \infty } \frac{dx}{ {x}^{2} - 1 }  \\

 =2 \int \limits^{ - 2} _{ -  \infty } \frac{dx}{( x- 1 )(x+1)}\\

 =4\int \limits^{ - 2} _{ -  \infty } \frac{((x+1) - (x-1))dx}{ (x-1)(x+1) }\\

=2 \int \limits^{ - 2} _{ -  \infty } \frac{dx}{ x- 1 }-2 \int \limits^{ - 2} _{ -  \infty } \frac{dx}{ x +1 }\\

 =[ln(x-1)]^{ - 2} _{ -  \infty }-[ln(x+1)]^{ - 2} _{ -  \infty }\\

= [ln(\frac{x-1}{x+1})]^{ - 2} _{ -  \infty }\\

=[ln(\frac{1-\frac{1}{x}}{1+\frac{1}{x}})]^{ - 2} _{ -  \infty }\\

=ln(3) -ln(1)

= ln(3)

Similar questions