Evaluate integral 0 to π/2 fn5xdx
Answers
Answered by
1
Answer:
Let I=∫
0
2
π
4+5cosx
1
dx
Substitute tan(
2
x
)=t⇒
2
1
sec
2
(
2
x
)dx=dt
So, x→0 ⇒t→0 and x→
2
π
⇒t→1
gives cosx=
1+t
2
1−t
2
,dx=
1+t
2
2dt
⇒ I=∫
0
1
4+5
1+t
2
1−t
2
1
1+t
2
2dt
=2∫
0
1
9−t
2
1
dt
⇒ I=
3
2
∫
0
1
1−
9
t
2
1
dt
Substitute
3
t
=u⇒dt=3du
So, t→0 ⇒u→0 and t→1 ⇒u→
3
1
⇒ I=
3
2
∫
0
3
1
1−u
2
1
du=
3
2
[
2
1
log
1−u
1+u
]
0
3
1
⇒ I=
3
1
(log2−0)=
3
1
log2
Answered by
0
Answer:
gojb
Step-by-step explanation:
lhghjkkkbnmlknbbhkkll
Similar questions
English,
2 months ago
Math,
2 months ago
Science,
4 months ago
Computer Science,
11 months ago
Social Sciences,
11 months ago
Math,
11 months ago