Evaluate integral 1/4-5sin^2x is multiply with dx
Answers
Step-by-step explanation:
We have,
Let, tan(x) = t
=> sec²(x) dx = dt
Answer:
We have,
\begin{gathered}\int \frac{1}{4 - 5 \sin^{2} (x) }dx \\\end{gathered}
∫
4−5sin
2
(x)
1
dx
\begin{gathered}= \int \frac{ \sec^{2} (x) }{4 \sec^{2} (x) - 5 \tan^{2} (x) } dx\\\end{gathered}
=∫
4sec
2
(x)−5tan
2
(x)
sec
2
(x)
dx
\begin{gathered}= \int \frac{ \sec^{2} (x) }{4 + 4 \tan^{2} (x) - 5 \tan^{2} (x) } dx \\\end{gathered}
=∫
4+4tan
2
(x)−5tan
2
(x)
sec
2
(x)
dx
\begin{gathered}= \int \frac{ \sec^{2} (x) }{4 - \tan^{2} (x) } dx \\\end{gathered}
=∫
4−tan
2
(x)
sec
2
(x)
dx
Let, tan(x) = t
=> sec²(x) dx = dt
\begin{gathered}= \int \frac{dt}{4 - {t}^{2} } \\\end{gathered}
=∫
4−t
2
dt
\begin{gathered}= \int \frac{dt}{ {(2)}^{2} - {(t)}^{2} } \\\end{gathered}
=∫
(2)
2
−(t)
2
dt
\begin{gathered}= \frac{1}{2 \times 2} ln | \frac{2 + t}{2 - t} | + c \\\end{gathered}
=
2×2
1
ln∣
2−t
2+t
∣+c
\begin{gathered}= \frac{1}{4} ln|\frac{2 - \tan(x) }{2 + \tan(x) } | + c \\\end{gathered}
=
4
1
ln∣
2+tan(x)
2−tan(x)
∣+c
\begin{gathered}= ln| \sqrt[4]{ \frac{2 - \tan(x) }{2 + \tan(x) }} | + c \\\end{gathered}