Math, asked by arshg898, 6 months ago

evaluate : integral of : xlog(x^2)​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \: x log( {x}^{2} ) dx \\

Using integration by parts

 =   log( {x}^{2} ) \int \: xdx -  \int( \frac{d}{dx} ( log( {x}^{2} )) )\int \: xdx )dx\\

 =  \frac{ {x}^{2} }{2}  log( {x}^{2} )  -  \int( \frac{2x}{ {x}^{2} } \times \frac{ {x}^{2} }{2}  )dx \\

 =  {x}^{2}  log(( {x}^{2} )^{ \frac{1}{2} } )  -  \int \: xdx \\

 =  {x}^{2}  log(x)  -  \frac{ {x}^{2} }{2}  + c \\

Similar questions