Math, asked by nishunarin, 1 day ago

evaluate Integration of 3x-2/x^2-3x+2 dx​

Answers

Answered by anindyaadhikari13
5

Correct Question:

Integrate:

 \displaystyle \rm \hookrightarrow I = \int \dfrac{2x + 3}{ \sqrt{ {x}^{2} + 3x -  2 } } \:  dx

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I = \int \dfrac{2x + 3}{ \sqrt{ {x}^{2}  + 3x - 2 } } \:  dx

Let us assume that:

 \rm \longrightarrow u =  {x}^{2} + 3x - 2

 \rm \longrightarrow \dfrac{du}{dx}  =  2x + 3

 \rm \longrightarrow du =  (2x + 3) \: dx

Therefore, the integral changes to:

 \displaystyle \rm \longrightarrow I = \int \dfrac{du}{ \sqrt{u} }

 \displaystyle \rm \longrightarrow I =  \dfrac{ {u}^{ \frac{ - 1}{2} + 1 } }{ \frac{ - 1}{2}  + 1}  + C

 \displaystyle \rm \longrightarrow I =  \dfrac{ {u}^{ \frac{ 1}{2}} }{ \frac{1}{2} }  + C

 \displaystyle \rm \longrightarrow I =2 \sqrt{u}  + C

Substituting back u = x² + 3x - 2, we get:

 \displaystyle \rm \longrightarrow I =2 \sqrt{ {x}^{2} + 3x - 2 }  + C

Therefore:

 \displaystyle \rm \longrightarrow  \int \frac{2x + 3}{ \sqrt{ {x}^{2} +3x - 2 } } \: dx =2 \sqrt{ {x}^{2} + 3x - 2 }  + C

★ Which is our required answer.

Additional Information:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions