Math, asked by chaty45, 9 months ago

Evaluate integration of cosh²xdx​

Answers

Answered by shadowsabers03
5

We're asked to evaluate,

\displaystyle\sf{\longrightarrow I=\int\cos (h^2x)\ dx\quad\quad\dots (1)}

Let \displaystyle\sf {h} be constant wrt \displaystyle\sf {x.}

Let,

\displaystyle\sf{\longrightarrow u=h^2x}

\displaystyle\sf{\longrightarrow du=h^2\,dx}

\displaystyle\sf{\longrightarrow dx=\dfrac {1}{h^2}\,du}

Then (1) becomes,

\displaystyle\sf{\longrightarrow I=\dfrac {1}{h^2}\int\cos u\ du}

We know \displaystyle\sf {\int\cos x\ dx=\sin x.}

\displaystyle\sf{\longrightarrow I=\dfrac {1}{h^2}\sin u+c}

\displaystyle\sf{\longrightarrow \underline {\underline {I=\dfrac {1}{h^2}\sin (h^2x)+c}}}

where \displaystyle\sf {c} is an arbitrary constant.

Answered by SrijanShrivastava
1

To Find:

 \\→I=  \int \cosh ^{2} (x) dx

Using the defined value of the hyperbolic cosine function.

i.e.,

 →\cosh(x)  =  \frac{ {e}^{x}  +  {e}^{ - x} }{2}

→{ \cosh}^{2} (x) =  \frac{ {e}^{2x} + 2 +  {e}^{ - 2x}  }{4}

 \implies {cosh}^{2} (x) =  \frac{1 +  \cosh(2x)}{2}

Multiplying both sides by dx and then integrating both sides.

 \\  →I =   \frac{1}{2} (\int dx +  \int  \cosh(2x)dx)

 \\→ <u>I =  \frac{2x + \sinh(2x) }{4}  + C \: ;   \:  \: C ∈ ℝ</u>

Similar questions