Math, asked by Anonymous, 1 year ago

Evaluate it


cot \:  =  \:  \frac{15}{8}  \\  \\  \frac{(2 \:  +  \: 2sin)(1 \:  -  \: sin)}{(1 + cos)(2 - 2cos)}

Answers

Answered by rohitkumargupta
30
HELLO DEAR,

GIVEN:-
cotθ = 15/8

so, \bold{\qquad \frac{(2 + 2sin\Theta)(1 - sin\Theta)}{(1 + cos\Theta)(2 - 2cos\Theta)}}

\bold{\qquad \Rightarrow \frac{2(1 + sin\Theta)(1 - sin\Theta)}{2(1 + cos\Theta)(1 - cos\Theta)}}

\bold{\qquad \Rightarrow \frac{(1 - sin^2\Theta)}{(1 - cos^2\Theta)}}

\bold{\qquad \Rightarrow \frac{cos^2\Theta}{sin^2\Theta}}

\bold{\qquad \Rightarrow cot^2\Theta}

[as cotθ = 15/8 so, cot²θ = 225/64]

\bold{\therefore, \Rightarrow cot^2\Theta = 225/64}

I HOPE ITS HELP YOU DEAR,
THANKS

Anonymous: Is there no alternative method
rohitkumargupta: u can do this by using triangle
Anonymous: I tried its not coming plz help
rohitkumargupta: oh just put base = 15 , height = 8
rohitkumargupta: u will get, hypotenuse = 17
Anonymous: I did that i used sin value and cos value but there is mistake in answer
Answered by TANU81
24
Hi there ♥️

Look at the attachment :)

Hence the value is 225/64.

Thanks !!.
Attachments:

TANU81: :)
Anonymous: Thank you
Anonymous: Great :)
TANU81: Thanks ^_^
Similar questions