Math, asked by saryka, 2 months ago

⇒ Evaluate
⇒ Kindly don't spam​

Attachments:

Answers

Answered by mathdude500
122

\large\underline{\bold{Given \:Question - }}

Evaluate the following integral :-

 \rm \: \displaystyle\int^{\pi} _{0} \sf \:  \dfrac{x \: tanx }{secx \: cosecx} dx

\large\underline{\sf{Solution-}}

Identities Used :-

\sf (1) \: \boxed{ \red{ \int\limits^a_0 \sf \:  {f(x)} \, dx =\int\limits^a_0 {f(a - x)}}}

\sf (2) \: \boxed{ \red{ \int\limits^{2a}_0  \sf \: {f(x)} \, dx =2\int\limits^a_0 {f(x)} \: if \: f(a - x) = f(x)}}

(3). \:  \boxed{ \red{ \sf \:sin(\pi \:  - x) = sinx}}

(4). \:  \boxed{ \red{ \sf \: {sin}^{2} x +  {cos}^{2} x = 1}}

(5). \:  \boxed{ \red{ \sf \: sin\bigg( \dfrac{\pi}{2}  - x\bigg)  = cosx}}

Let's solve the problem now!!

 \rm :\longmapsto\:\rm \:I =  \displaystyle\int^{\pi} _{0} \sf \:  \dfrac{x \: tanx }{secx \: cosecx} dx

 \rm   \: I\:  =  \: \:\rm \: \displaystyle\int^{\pi} _{0} \sf \:  \dfrac{x \: \dfrac{sinx}{cosx}  }{\dfrac{1}{cosx} \times  \dfrac{1}{sinx} } dx

 \rm  \: I \:  =  \: \:\rm \: \displaystyle\int^{\pi} _{0} \sf \:x\:  {sin}^{2}x \:dx -  -  - (1)

 \rm  \: I \:  =  \: \:\rm \: \displaystyle\int^{\pi} _{0} \sf \:(\pi \:  - x)\:  {sin}^{2}(\pi \:  - x) \:dx

  \:  \:  \:  \:  \:  \:  \:  \blue{\because \: \sf \int\limits^a_0  \bf \: {f(x)} \, dx =\int\limits^a_0 {f(a - x)}}

 \rm  \: I \:  =  \: \:\rm \: \displaystyle\int^{\pi} _{0} \sf \:(\pi \:  - x)\:  {sin}^{2}x \:dx -  -  - (2)

On adding equation (1) and (2), we get

 \rm  \: 2I \:  =  \: \:\rm \: \displaystyle\int^{\pi} _{0} \sf \:(x + \pi \:  - x)\:  {sin}^{2}x \:dx

 \rm  \: 2I \:  =  \: \:\rm \: \displaystyle\int^{\pi} _{0} \sf \pi\:  {sin}^{2}x \:dx

 \rm  \:  \cancel2I \:  =  \: \:\rm \: \cancel2 \displaystyle\int^{ \dfrac{\pi}{2} } _{0} \sf \pi\:  {sin}^{2}x \:dx  -  -  - (3)

  \:  \:  \:  \because \: \red{ \int\limits^{2a}_0  \sf \: {f(x)} \, dx =2\int\limits^a_0 {f(x)} \: as \: sin(\pi - x) = sinx}

 \rm  \: I \:  =  \: \:\rm \: \displaystyle\int^{ \dfrac{\pi}{2} } _{0} \sf \pi\:  {sin}^{2}\bigg(\dfrac{\pi}{2} - x  \bigg)\:dx

 \rm  \: I \:  =  \: \:\rm \: \displaystyle\int^{ \dfrac{\pi}{2} } _{0} \sf \pi\:  {cos}^{2}x\:dx   -  -  - (4)

On adding equation (3) and equation (4), we get

 \rm  \: 2I \:  =  \: \:\rm \: \displaystyle\int^{ \dfrac{\pi}{2} } _{0} \sf \pi\:( {sin}^{2}x +  {cos}^{2}x)\:dx

 \rm  \: 2I \:  =  \: \:\rm \: \displaystyle\int^{ \dfrac{\pi}{2} } _{0} \sf \pi\:\:dx

\rm  \:2I \:   =  \: \:\rm \:\pi \: \bigg( x\bigg)_0^{\dfrac{\pi}{2}}

\rm  \:2I \:   =  \: \:\rm \:\pi \:  \bigg(\dfrac{\pi}{2} - 0 \bigg)

\rm  \:2I \:   =  \: \:\rm \:\pi \:  \bigg(\dfrac{\pi}{2} \bigg)

\rm  \:I \:   =  \: \:\rm \:\dfrac{ {\pi}^{2} }{4}

Additional Information :-

\sf (1) \:  \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(t)}

\sf (2) \: \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)}

\sf (3) \: \int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ where\ \ a < c < b

\sf (4) \: \int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)}

Similar questions