Math, asked by nimkardadarao03, 7 months ago

evaluate lim x tends to a ( √a+2x-√3x/√3a+x-2√x)​

Answers

Answered by amansharma264
18

EXPLANATION.

 \sf :  \implies \:   \lim_{x \to \: a} \:  =  \dfrac{ \sqrt{a + 2x} -  \sqrt{3x}  }{ \sqrt{3a + x}   - 2 \sqrt{x} }   \:  \:  \:  \: and \:  \:( a \:  \ne \: 0)  \\ \\ \sf :  \implies \: we \: can \: put \: x \:  = a \: in \: equation \: \\  \\ \sf :  \implies \:   \lim_{x \to \: a} \:  =  \frac{ \sqrt{a + 2a}  \:  -  \sqrt{3a}  }{ \sqrt{3a + a}  - 2 \sqrt{a} }  \\  \\  \sf :  \implies \:   \lim_{x \:  \to \: a} \:  =  \frac{ \sqrt{3a}  -  \sqrt{3a} }{ \sqrt{4a } - 2 \sqrt{a}  } \\  \\  \sf :  \implies \: it \: is \: in \:  \frac{0}{0}  \:  \: form \: indeterminant

\sf :  \implies \: in \: the \: case \: of \: roots \: we \: can \: simply \: rationalize \:  \\  \\ \sf :  \implies \:   \lim_{x \to \: a} \:  =  \frac{ \sqrt{a + 2x} -  \sqrt{3x}  }{ \sqrt{3a + x} - 2 \sqrt{x}  }   \:  \:  \: \times   \:  \:  \:  \frac{ \sqrt{a + 2x}    +   \sqrt{3x} }{ \sqrt{a + 2x} +  \sqrt{3x}  }  \:  \:  \:  \times  \:  \:  \:  \:  \frac{ \sqrt{3a + x} \:   + 2 \sqrt{x} }{ \sqrt{3a + x} \:  +  \: 2 \sqrt{x}  }  \\  \\ \sf :  \implies \:   \lim_{x \to \: a} \:  =  \frac{a + 2x - 3x( \sqrt{3a + x} + 2 \sqrt{x} ) }{3a + x - 4x( \sqrt{a + 2x} +  \sqrt{3x})  }  \\  \\ \sf :  \implies \:   \lim_{x \to \: a} \:  =  \frac{(a - x)( \sqrt{3a + x}  + 2 \sqrt{x}) }{3(a - x)( \sqrt{a + 2x}  +  \sqrt{3x}) }

\sf :  \implies \:   \lim_{x \to \: a} \:  =  \dfrac{ \sqrt{3a + x}  + 2 \sqrt{x} )}{3( \sqrt{a + 2x} +  \sqrt{3x} ) } \\  \\   \sf :  \implies \: put \: the \: value \: of \: x \:  = a \: in \: equation \\  \\ \sf :  \implies \:   \lim_{x \to \: a} \:  =  \frac{ (\sqrt{4a}  + 2 \sqrt{a} )}{3( \sqrt{3a}  +  \sqrt{3a}) } \\  \\  \sf :  \implies \:   \lim_{x \:  \to \: a} \:  =  \frac{4 \sqrt{a} }{3 \times 2 \times  \sqrt{3a}  }  \\  \\ \sf :  \implies \:   \lim_{x \:  \to \: a} \:  =  \frac{2}{3 \sqrt{3} }   \:  =  \: answer

Similar questions