Math, asked by aleenaamin2, 3 days ago

Evaluate
Limit. √x^2 +9-5 / x+4
0—>1

Attachments:

Answers

Answered by anindyaadhikari13
7

Solution:

Given limit:

 \displaystyle \rm = \lim_{x \to1} \:  \dfrac{ \sqrt{ {x}^{2}  + 9 - 5} }{x + 4}

 \displaystyle \rm = \lim_{x \to1} \:  \dfrac{ \sqrt{ {x}^{2} + 4} }{x + 4}

Put x = 1 here to get the value of the limit.

 \displaystyle \rm = \dfrac{ \sqrt{ {1}^{2} + 4} }{1+ 4}

 \displaystyle \rm = \dfrac{ \sqrt{5} }{5}

 \displaystyle \rm = \dfrac{1 }{ \sqrt{5} }

Therefore:

 \displaystyle \rm \longrightarrow\lim_{x \to1} \:  \dfrac{ \sqrt{ {x}^{2} + 4} }{x + 4}  =  \dfrac{1}{ \sqrt{5} }

Which is our required answer.

Answer:

 \displaystyle \rm \hookrightarrow\lim_{x \to1} \:  \dfrac{ \sqrt{ {x}^{2} + 4} }{x + 4}  =  \dfrac{1}{ \sqrt{5} }

Learn More:

Standard limits.

\displaystyle\rm 1.\:\: \lim_{x\to0}\sin(x)=0

\displaystyle\rm 2.\:\: \lim_{x\to0}\cos(x)=1

\displaystyle\rm 3.\:\: \lim_{x\to0}\dfrac{\sin(x)}{x}=1

\displaystyle\rm 4.\:\: \lim_{x\to0}\dfrac{\tan(x)}{x}=1

\displaystyle\rm 5.\:\: \lim_{x\to0}\dfrac{1-\cos(x)}{x}=0

\displaystyle\rm 6.\:\: \lim_{x\to0}\dfrac{\sin^{-1}(x)}{x}=1

\displaystyle\rm 7.\:\: \lim_{x\to0}\dfrac{\tan^{-1}(x)}{x}=1

\displaystyle\rm 8.\:\: \lim_{x\to0}\dfrac{\log(1+x)}{x}=1

\displaystyle\rm 9.\:\: \lim_{x\to0}\dfrac{e^{x}-1}{x}=1

Similar questions