Evaluate:
limit x tends to 0 ( sin x/ x)^(1/x)
Answers
Answer:
easy way:
limit x tends to 0 (sinx/x)
= 1
limit x tends to 0 (1/x)
= ∞
so limit x tends to 0 ( sin x/ x)^(1/x)
= 1^∞
=1
Step-by-step explanation:
limit x tends to 0 ( sin x/ x)^(1/x)
= limit x tends to 0 ( (sin x)^(1/x) ) / ( x^(1/x) )
= 0/0
use L'Hôpital's rule
= limit x tends to 0 ( ln(sin x)^(1/x) ) / ln( x^(1/x) )
= limit x tends to 0 ((1/x)(ln sin x) / (1/x)(lnx))
= limit x tends to 0 ( d((1/x)(ln sinx)/dx / d((1/x)lnx/dx )
= limit x tends to 0 ( (1/x)(1/sinx)(cosx) + (ln sinx)(-1/x^2) / (1/x)(1/x)+(lnx)(-1/x^2))
= limit x tends to 0 ((tanx)/x - ((ln sinx)/x^2)) / (1/x^2) - (lnx)(/x^2))
= limit x tends to 0 (x tanx - ln sinx) / (1 - lnx)
= ∞/∞
use L'Hôpital's rule
limit x tends to 0 (x tanx - ln sinx) / (1 - lnx)
= limit x tends to 0 (x sec^2 x+ tanx - (1/sinx)(cosx)) / 1/x)
= limit x tends to 0 (x sec^2 x+ tanx - (1/sinx)(cosx)) / 1/x)
= limit x tends to 0 x(x sec^2 x+ tanx - cotx)
= limit x tends to 0 x^2 sec^2 x+ xtanx - xcotx)
= limit x tends to 0 (x^2 sec^2 x+ xtanx) - limit x tends to 0 (xcotx)
= 0 - limit x tends to 0 (xcotx)
= - limit x tends to 0 (x/tanx)
=0/0
use L'Hôpital's rule
= - limit x tends to 0 (x/tanx)
= - limit x tends to 0 (-1/sec^2 x)
= 1