Math, asked by Amitosh, 1 year ago

evaluate: log 16 to the base 0.5

Answers

Answered by Anonymous
34
Heya user,

---->[tex]log_{0.5}16 = log_{0.5} [2]^4 [/tex]
-----> = 4log_{0.5} [ 1/2]^{-1}
----->4 log_{0.5} [0.5]^{-1}
===> 4 * -1 *  log_{0.5} [0.5]
===> -4 * 1 = -4

Amitosh: explain the last step
Anonymous: OOOok
Amitosh: explain plz
Amitosh: ok thanks
Answered by harendrachoubay
8

The value of \log_{0.5} 16=-4

Step-by-step explanation:

We have,

\log_{0.5} 16

To find, the value of \log_{0.5} 16=?

\log_{0.5} 16

=\log_{0.5} 2^{4}

=\log_{0.5} \dfrac{1}{2^{-4}}

Using the formula,

a^{n}=\dfrac{1}{a^{-n}}

=\log_{0.5} (\dfrac{1}{2})^{-4}

=(-4)\log_{0.5} (\dfrac{1}{2})

Using the formula,

\log a^{m} =m\log a

=(-4)\log_{0.5} 0.5

= - 4 × 1

Using the formula,

\log_a a =1

= - 4

The value of \log_{0.5} 16=-4

Hence, the value of \log_{0.5} 16=-4

Similar questions