Math, asked by aespa3103, 1 day ago

Evaluate

No spam! i will mark brainlist if you will do the correct answer​

Attachments:

Answers

Answered by user0888
8

\rm\large\underline{\text{Basics}}

\cdots\longrightarrow\textrm{$(a+b)(a-b)=a^2-b^2$ as a polynomial identity.}

\cdots\longrightarrow\textrm{$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$ as a power rule.}

\cdots\longrightarrow\textrm{$(ab)^{r}=a^rb^r$ as a power rule.}

\cdots\longrightarrow\textrm{$(a^r)^{s}=a^{rs}$ as a power rule.}

\rm\large\underline{\text{Solution}}

\begin{aligned}\cdots\longrightarrow (14^2-13^2)^{\frac{2}{3}}&=(14+13)^{\frac{2}{3}}\times (14-13)^{\frac{2}{3}}\\&=27^{\frac{2}{3}}\times1^{\frac{2}{3}}\\&=(3^3)^{\frac{2}{3}}\\&=3^2\\&=9\end{aligned}

\begin{aligned}\cdots\longrightarrow (15^2-12^2)^{\frac{1}{4}}&=(15+12)^{\frac{1}{4}}\times (15-12)^{\frac{1}{4}}\\&=27^{\frac{1}{4}}\times3^{\frac{1}{4}}\\&=(3^4)^{\frac{1}{4}}\\&=3^1\\&=3\end{aligned}

The required value is,

\cdots\longrightarrow\dfrac{(14^2-13^2)^{\frac{2}{3}}}{(15^2-12^2)^{\frac{1}{4}}}=\dfrac{9}{3}=3

\rm\large\underline{\text{Question review!}}

(Question)

Find the value of \sqrt{\dfrac{2^{-10}+2^{-8}+2^{-6}}{2^{10}+2^8+2^6}}.

(Solution)

Let us first factorize by the identity ka+kb=k(a+b).

\begin{aligned}\cdots\longrightarrow\sqrt{\dfrac{2^{-10}\times (2^{0}+2^{2}+2^{4})}{2^6\times (2^{4}+2^{2}+2^{0})}}&=\sqrt{\dfrac{2^{-10}}{2^{6}}}\\&=\sqrt{2^{-16}}\\&=2^{-8}\\&=\dfrac{1}{256}\end{aligned}

Note: Some of the commands may not show in the mobile app. Then, kindly use desktop mode on the web to view the answer.

Answered by Anonymous
70

\large\underline{ \underline{ \rm{Explanation:}}} \\

To Find,

  •  \text{The value of}  \: \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } }.  \\

Solving the problem,

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } \\

As we know that,

 [ {x}^{2} -  {y}^{2}  = (x + y)(x - y) ] \\

We get,

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ { \{(14 + 13)(14 - 13) \}}^{ \frac{2}{3} } }{ { \{(15 + 12)(15 - 12)  \}}^{ \frac{1}{4} } } \\

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ { \{1(27) \}}^{ \frac{2}{3} } }{ { \{3(27)\}}^{ \frac{1}{4} } } \\

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ { (27)}^{ \frac{2}{3} } }{ {(81)}^{ \frac{1}{4} } } \\

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ {( {27}^{ \frac{1}{3} } )}^{2}  }{ \sqrt[4]{81}  } \\

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ ({ \sqrt[3]{27} )}^{2}  }{ \sqrt[4]{3 \times 3 \times 3 \times 3}  } \\

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ ({ \sqrt[3]{3 \times 3 \times 3} )}^{2}  }{ 3} \\

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ ({3 )}^{2}  }{ 3} \\

 \cdot \cdot \cdot \longrightarrow \frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = \frac{ \cancel{3 } \times 3 }{  \cancel{3}} \\

 \cdot \cdot \cdot \longrightarrow  \boxed{\frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = 3} \\  \\

\large\underline{ \underline{ \rm{Required \:  Answer:}}} \\

  • \boxed{\frac{ {( {14}^{2}  -  {13}^{2}) }^{ \frac{2}{3} } }{ {( {15}^{2} -  {12}^{2} ) }^{ \frac{1}{4} } } = 3}

\large\underline{ \underline{  \text{More Information:}}} \\

  •  \sqrt[n]{a}  =  {a}^{ \frac{1}{n} }  \\

  •  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \\

  •  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \\

  •  {a}^{m}  \times  {b}^{m}  =  {(ab)}^{m}  \\
Similar questions