Math, asked by anjalisharma1226, 1 year ago

Evaluate P(A ∪ B), if 2P(A) = P(B) = \frac{5}{13} and P(A|B) = \frac{2}{5}

Answers

Answered by MaheswariS
0

Answer:

\frac{11}{26}

Step-by-step explanation:

Concept:

Addition theorem of probabaility:

P(A∪B) = P(A)+P(B)-P(A∩B)

Given:

2 P(A) = P(B) = \frac{5}{13}

P(A)=\frac{5}{26}\\\\P(B) =\frac{5}{13}

Now,

P(A|B)=\frac{2}{5}

P(A∩B)/P(B)=\frac{2}{5}

P(A∩B)=\frac{2}{5}.\frac{5}{13}

P(A∩B)=\frac{2}{13}

P(A∪B) = P(A)+P(B)-P(A∩B)

P(A∪B) = \frac{5}{26}+\frac{5}{13}-\frac{2}{13}

P(A∪B) =\frac{5+10-4}{26}

P(A∪B) =\frac{11}{26}

Similar questions