Math, asked by rajannapraju982, 5 months ago

evaluate:-

Please answer this question it's urgent​

Attachments:

Answers

Answered by deepakshikabra997
1

Answer:

0.395

Step-by-step explanation:

= [(2/3)^3]^2 * (1/3)^-4 *9^-1 (1/2)^1

= (2/3)^6* (1/3)^-4 *(3)^-2 (1/2)^1                                ∵ [(a^m)^n = (a)^m+n]

= (2/3)^6* (1/3)^-4 *(3)^2 (1/2)                                    ∵  [(a)^-m = (1/a)^m ]

= 2/3 * 2/3 * 2/3 * 2/3 * 2/3 * 2/3 * 3 * 3 * 1/2    

= 32/81

= 0.395  

Answered by Anonymous
7

Solution

we have

 \sf :  \implies \:  \bigg[ \bigg( \dfrac{2}{3} \bigg)^{3}  \bigg]^{2}  \times  \bigg( \dfrac{1}{3} \bigg)^{ - 4}  \times  {9}^{ - 1}  \times  \bigg( \dfrac{1}{2}  \bigg)^{1}

We use exponential identities

 \sf :  \implies \: (a {}^{m} )^{n}  =  {a}^{mn}

 \sf  :  \implies \:  {a}^{ - 1}  =  \dfrac{1}{a}

 \sf  : \implies \:  \bigg( \dfrac{1}{a}  \bigg)^{ - m}  =  {a}^{m}

Now Use this identities

 \sf :  \implies \:  \bigg[ \bigg( \dfrac{2}{3} \bigg)^{3}  \bigg]^{2}  \times  \bigg( \dfrac{1}{3} \bigg)^{ - 4}  \times  {9}^{ - 1}  \times  \bigg( \dfrac{1}{2}  \bigg)^{1}

 \sf :  \implies \:  \bigg( \dfrac{2}{3}  \bigg)^{6}  \times (3) ^{4} \times  \dfrac{1}{9}  \times  \dfrac{1}{2}

 \sf  : \implies \:  \bigg( \dfrac{2}{3}  \bigg)^{6}  \times  {3}^{4}  \times  \dfrac{1}{ {3}^{2} }  \times  \dfrac{1}{2}

 \sf  : \implies \:  \dfrac{ {2}^{6} }{ {3}^{6} }  \times  {3}^{2}  \times  \dfrac{1}{2}

 \sf :  \implies \:  \dfrac{2 {}^{5} }{ {3}^{4} }

 \sf :  \implies \dfrac{2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3}

 \sf :  \implies \:  \dfrac{32}{81}

Answer

\sf :  \implies \:  \dfrac{32}{81}

Similar questions