Math, asked by dharshinivalliappan, 10 days ago

evaluate sin 120 degree​

Answers

Answered by jitendra12iitg
0

Answer:

The answer is \dfrac{\sqrt 3}{2}

Step-by-step explanation:

Using \sin 2\theta=2\sin\theta\cos\theta

We have

      \sin 120^\circ=\sin(2\times 60^\circ)=2\sin60^\circ\times \cos60^\circ

                   =2\times \dfrac{\sqrt 3}{2}\times \dfrac{1}{2}=\dfrac{\sqrt3}{2}

 Another method :

\sin(120^\circ)=\sin(180^\circ-60^\circ)=\sin 60^\circ=\dfrac{\sqrt3}{2}

Answered by XxitzMichAditixX
1

Answer:

The answer is \dfrac{\sqrt 3}{2}

2

3

Step-by-step explanation:

Using \sin 2\theta=2\sin\theta\cos\thetasin2θ=2sinθcosθ

We have

\sin 120^\circ=\sin(2\times 60^\circ)=2\sin60^\circ\times \cos60^\circsin120

=sin(2×60

)=2sin60

×cos60

=2\times \dfrac{\sqrt 3}{2}\times \dfrac{1}{2}=\dfrac{\sqrt3}{2}=2×

2

3

×

2

1

=

2

3

Another method :

\sin(120^\circ)=\sin(180^\circ-60^\circ)=\sin 60^\circ=\dfrac{\sqrt3}{2}sin(120

)=sin(180

−60

)=sin60

=

2

3

hope it helps ♡

#MichAditi✨✌️

Similar questions