Evaluate sin(50+theta)-cos(40-theta)÷sin40.Cosec40+tan1.Tan40.Tan50.Tan89÷4 (cos2 29+cos2 61)
Answers
Answered by
8
Here your answer goes
Step :- 1
Given ,
Sin 50° can be written as 90° - 45°
⇒ Sin (90 - 40 + theta ) - Cos ( 40 - theta )
Step :- 2
⇒ sin[90-(40-theta)]- cos(40-theta)
⇒ sin[90-(40-theta)]- cos(40-theta)
⇒
∴ sin ( 90 - theta ) = Cos theta
⇒ 0
Therefore , Sin ( 50 + theta ) - Cos( 40 - theta ) = 0
↓↓↓
Be Brainly
Together We go far →
Answered by
36
Answer:
1/4
Step-by-step explanation:
sin(50+a)-cos(40-a)/sin40*cosec40+tan1*tan40*tan50*tan89/4(cos^2 29+cos^2 61)
sina=cos(90-a)
sina=1/coseca
tana=cot(90-a)
tana=1/cota
sin^2a+cos^2a=1
sin(50+a)-sin(90-(40-a)/1+tan1*cot(90-89)*tan40*cot(90-50)/4(cos^2 29+sin^2 (90-61)
sin(50+a)-sin(50+a)/1+tan1*cot1*tan40*cot40/4(cos^2 29+sin^2 29)
0/1+1*1/4(1)
0+1/4
=1/4 plzz mark it as brainliest
Similar questions