Math, asked by sadia1161, 1 year ago

evaluate sin 58 / cos 32 + tan 42 / cot 48


armanparate: Plz upload photo of your question for better understanding

Answers

Answered by adee1729
25

sin(90-32)/cos32 + tan(90-48)/cot48,

cos32/cos32 + cot48/cot48,

1 + 1,

2

Answered by pinquancaro
24

\frac{\sin 58}{\cos 32}+\frac{\tan 42}{\cot 48}=2

Step-by-step explanation:

Given : Expression \frac{\sin 58}{\cos 32}+\frac{\tan 42}{\cot 48}

To find : Evaluate the expression ?

Solution :

Expression \frac{\sin 58}{\cos 32}+\frac{\tan 42}{\cot 48}

Re-write it as,

=\frac{\sin (90-32)}{\cos 32}+\frac{\tan (90-48)}{\cot 48}

Applying trigonometric identities,

\sin(90-\theta)=\cos \theta

\tan(90-\theta)=\cot \theta

=\frac{\cos 32}{\cos 32}+\frac{\cot 48)}{\cot 48}

=1+1

=2

Therefore, \frac{\sin 58}{\cos 32}+\frac{\tan 42}{\cot 48}=2

#Learn more

Evaluate: (cos^2 32° + cos^2 58°)/(sin^2 59° + sin^2 31°)

https://brainly.in/question/8005087

Similar questions