Math, asked by muskan373, 1 year ago

evaluate: Sin 60°/cos^2 45°- cot30°+ 15 cos 90°

Answers

Answered by AryanTennyson
47
Hope this will help u.......
Attachments:
Answered by harendrachoubay
12

\dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90=0

Step-by-step explanation:

We have,

\dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90

Evaluate, \dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90 = ?

\dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90

=\dfrac{\dfrac{\sqrt{3}}{2} }{(\dfrac{1}{\sqrt{2}})^{2} } -\sqrt{3} +15(0)

[ ∵ \sin 60=\dfrac{\sqrt{3}}{2} ,\cos 45=\dfrac{1}{\sqrt{2}} ,\cot 30=\sqrt{3} and \cos 90=1]

=\dfrac{\dfrac{\sqrt{3}}{2} }{\dfrac{1}{2}} -\sqrt{3} +0

=\sqrt{3} -\sqrt{3}

= 0

Hence, \dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90=0

Similar questions