evaluate sin15°+sin105
Answers
Answered by
1
Answer:
sin105
∘
=
√6
+
√2
4
Explanation:
We know
sin
(A+B)
=
sinA
cosB
+
cosA
sinB
Hence
sin105
∘
=
sin
(
60∘
+
45∘
)
=
sin60
∘
cos45
∘
+
cos60
∘
sin45
∘
=
√3
2×1
√2
+12×1
√2
=
√3
+1
2
√2
×
√2√2
=
√6
+
√2
4
42
sin105
∘
=
√6
+
√2
4
Explanation:
We know
sin
(A+B)
=
sinA
cosB
+
cosA
sinB
Hence
sin105
∘
=
sin
(
60∘
+
45∘
)
=
sin60
∘
cos45
∘
+
cos60
∘
sin45
∘
=
√3
2×1
√2
+12×1
√2
=
√3
+1
2
√2
×
√2√2
=
√6
+
√2
4
42
Answered by
2
the answer is 1 by using complementary angle
sin(90-theta) cos
so sin(90-105)+ sin 105
cos 105 + sin105 =1
hope this is wright ans
if it is wright pls mark as brainllest
sin(90-theta) cos
so sin(90-105)+ sin 105
cos 105 + sin105 =1
hope this is wright ans
if it is wright pls mark as brainllest
vaibhavpal681p2nc0c:
raj.
Similar questions