Math, asked by vardhanmitul12, 1 day ago

Evaluate : sin² 63° + sin²27°/ cos²17° + cos²73°​

Answers

Answered by patilkanishq
0

Answer:

sin2 A + cos2 A = 1

sin (90° - θ)= cosθ

cos (90° - θ) = sin θ

(i) (sin2 63° + sin2 27) / (cos2 17° + cos2 73°)

= [sin(90° - 27)]2 + sin2 27 / [cos(90° - 73°)]2 + cos2 73°

= (cos2 27° + sin2 27°) / (sin2 73° + cos2 73°) [ Since sin (90° - θ) = cos θ and cos (90° - θ) = sin θ]

= 1/1 (By using the identity sin² A + cos² A = 1)

= 1

Step-by-step explanation:

please mark me brainleast

Answered by shubhkuhu17
0

Answer:

Here is your answer friend :)

Step-by-step explanation:

We will be using basic trigonometric identities and trigonometric ratios of complementary angles to solve the given question.  

sin2 A + cos2 A = 1

sin (90° - θ)= cosθ  

cos (90° - θ) = sin θ  

(i) (sin2 63° + sin2 27) / (cos2 17° + cos2 73°)  

= [sin(90° - 27)]2 + sin2 27 / [cos(90° - 73°)]2 + cos2 73°

= (cos2 27° + sin2 27°) / (sin2 73° + cos2 73°) [ Since sin (90° - θ) = cos θ and cos (90° - θ) = sin θ]

= 1/1 (By using the identity sin² A + cos² A = 1)

= 1

Similar questions