Evaluate : sin² 63° + sin²27°/ cos²17° + cos²73°
Answers
Answer:
sin2 A + cos2 A = 1
sin (90° - θ)= cosθ
cos (90° - θ) = sin θ
(i) (sin2 63° + sin2 27) / (cos2 17° + cos2 73°)
= [sin(90° - 27)]2 + sin2 27 / [cos(90° - 73°)]2 + cos2 73°
= (cos2 27° + sin2 27°) / (sin2 73° + cos2 73°) [ Since sin (90° - θ) = cos θ and cos (90° - θ) = sin θ]
= 1/1 (By using the identity sin² A + cos² A = 1)
= 1
Step-by-step explanation:
please mark me brainleast
Answer:
Here is your answer friend :)
Step-by-step explanation:
We will be using basic trigonometric identities and trigonometric ratios of complementary angles to solve the given question.
sin2 A + cos2 A = 1
sin (90° - θ)= cosθ
cos (90° - θ) = sin θ
(i) (sin2 63° + sin2 27) / (cos2 17° + cos2 73°)
= [sin(90° - 27)]2 + sin2 27 / [cos(90° - 73°)]2 + cos2 73°
= (cos2 27° + sin2 27°) / (sin2 73° + cos2 73°) [ Since sin (90° - θ) = cos θ and cos (90° - θ) = sin θ]
= 1/1 (By using the identity sin² A + cos² A = 1)
= 1