Evaluate:
Sin²34 + sin²56 + 2 tan18 tan72 - cot²30
Answers
Answered by
88
sin²34°+ sin²56°+ 2tan18°tan72°-cot²30
=sin²34°+sin²(90°-34°)+2tan18°tan(90°-18°)-cot²30°
={sin²34°+cos²34°}+2{tan18°cot18°}-(√3)²
=1+2{1}-3
=3-3
=0
=sin²34°+sin²(90°-34°)+2tan18°tan(90°-18°)-cot²30°
={sin²34°+cos²34°}+2{tan18°cot18°}-(√3)²
=1+2{1}-3
=3-3
=0
Answered by
1
Answer:
0
Step-by-step explanation:
Given:- sin²34° + sin²56° + 2 tan18° tan72° - cot²30°
To Find:- Value of the given expression.
Solution:-
Given, sin²34° + sin²56° + 2 tan18° tan72° - cot²30°
= sin²34° + sin²(90 - 34)° + 2 tan18° tan(90 - 18)° - cot²30°
= sin²34° + cos²34° + 2 tan18° cot18° - cot²30° [∵ sin(90° - A) = cos A,
tan(90° - A) = cot A]
= 1 + 2 tan18° × -
[∵ sin²A + cos²A = 1 & cot30° =
]
= 1 + 2 - 3
= 0
Therefore, sin²34° + sin²56° + 2 tan18° tan72° - cot²30° = 0.
#SPJ3
Similar questions