Math, asked by rajagam03, 9 months ago

evaluate sin5pi/12 . cospi/12 using(sin(a+b)+sin(a-b))

Answers

Answered by BrainlyPopularman
5

TO FIND :

Value of   \:  \:  \bf  \sin \left( \dfrac{5 \pi}{12} \right) + \cos \left( \dfrac{ \pi}{12} \right) = ? \:  \:

SOLUTION :

  \:  \: \implies  \bf \sin \left( \dfrac{5 \pi}{12} \right) + \cos \left( \dfrac{ \pi}{12} \right)  \:  \:

• Using identity –

  \:  \:  \bf   \to \:  \: \sin(A+B)+ \sin(A-B) = 2 \sin(A)  \cos(B)  \:  \:

• Here –

  \:  \: \implies \bf \: A+B =  \dfrac{5\pi}{12}  \:  \:  \:  \:  \:  -  -  -  - eq.(1)

• And –

  \:  \: \implies \bf \: A - B =  \dfrac{\pi}{12}  \:  \:  \:  \:  \:  -  -  -  - eq.(2)

• Add both equation –

  \:  \: \implies \bf \:A+B+A-B = \dfrac{5\pi}{12} + \dfrac{\pi}{12}

  \:  \: \implies  \bf \:2A = \dfrac{6\pi}{12}

  \:  \: \implies \bf \:2A = \dfrac{\pi}{2}

  \:\: \implies \large { \boxed{ \bf \:A = \dfrac{\pi}{4}}}

• Now Using eq.(1) –

  \:  \: \implies \bf \:  \dfrac{\pi}{4} +B =  \dfrac{5\pi}{12}

  \:  \: \implies \bf \: B =  \dfrac{5\pi}{12} -  \dfrac{\pi}{4}

  \:  \: \implies \large { \boxed{\bf \: B =  \dfrac{\pi}{6}}}

• Now Using formula –

  \:  \: \implies  \bf    \sin \left( \dfrac{5 \pi}{12} \right) + \cos \left( \dfrac{ \pi}{12} \right) = 2 \sin \left( \dfrac{\pi}{4} \right)\cos \left( \dfrac{\pi}{6} \right)\:  \:

  \:  \: \implies  \bf    \sin \left( \dfrac{5 \pi}{12} \right) + \cos \left( \dfrac{ \pi}{12} \right) = 2  \left( \dfrac{1}{ \sqrt{2} } \right) \left( \dfrac{ \sqrt{3} }{2} \right)\:  \:

  \:  \: \implies \large{ \boxed{ \bf \sin \left( \dfrac{5 \pi}{12} \right) + \cos \left( \dfrac{ \pi}{12} \right) =  \dfrac{ \sqrt{3} }{ \sqrt{2} }}} \:  \:

▪︎ Hence , The value of   \:  \:  \bf  \sin \left( \dfrac{5 \pi}{12} \right) + \cos \left( \dfrac{ \pi}{12} \right)\:\: is \:\: \sqrt{ \dfrac{3}{2} }  \:  \:

Similar questions