Math, asked by ajaynayak4811, 1 year ago

evaluate: sinA cosA - sinA cos(90-A) cos A/ sec(90-A) - cosA sin(90-A) sinA/cosec(90-A)

Answers

Answered by MANKOTIA
6
please write question again .
Answered by tardymanchester
6

Answer:

\sin A \cos A - \frac{\sin A \cos(90-A)\cos A}{\sec(90-A)} - \frac{\cosA sin(90-A) \sin A}{\cosec(90-A)}=0

Step-by-step explanation:

Given : \sin A \cos A - \frac{\sin A \cos(90-A)\cos A}{\sec(90-A)} - \frac{\cosA sin(90-A) \sin A}{\csc(90-A)}

To evaluate : The given expression?

Solution :

\sin A \cos A - \frac{\sin A \cos(90-A)\cos A}{\sec(90-A)} - \frac{\cosA \sin(90-A) \sin A}{\csc(90-A)}

=\sin A \cos A - \frac{\sin A \sin A \cos A}{\csc A} - \frac{\cosA \cosA \sin A}{\sec A}

[∵ sin(90°-a)=cosa, cos(90°-a)=sina , sec(90°-a) = coseca , cosec(90°-a) = seca]

=\sin A \cos A -\sin^3 A \cos A-\cos^3A \sin A

[∵1/seca = cosa , 1/coseca = sina]

=\sin A \cos A -\sin A \cos A[\sin^2 A+\cos^2 A]

=\sin A \cos A -\sin A \cos A[1]

[ ∵sin²Ф + cos²Ф = 1 ]

=\sin A \cos A -\sin A \cos A

=0

Similar questions